
Juan Cruz Viotti, Founder at Sourcemeta

Applying Software Engineering
Practices to Schemas
The JSON-Schema-first approach to API specifications

Founder / Consultant at Sourcemeta

• TSC member of JSON Schema

• O’Reilly author on the topic of JSON Schema for data science

• Award-winning research at the University of Oxford on JSON
Schema

• Author of various JSON Schema tooling, such as
LearnJSONSchema.com and AlterSchema

About me: Juan Cruz Viotti

http://LearnJSONSchema.com

API Specifications
Human/Machine readable descriptions of APIs

• Single source of truth

• Standardised documentation

• Code generation

• Improved testing / validation

• Increased discoverability

API Specifications
Human/Machine readable descriptions of APIs

Source: Postman 2023 State of API Report

• Single source of truth

• Standardised documentation

• Code generation

• Improved testing / validation

• Increased discoverability

API Specifications
Human/Machine readable descriptions of APIs

Source: Postman 2023 State of API Report

• Single source of truth

• Standardised documentation

• Code generation

• Improved testing / validation

• Increased discoverability

Game Changing!

Are you using any of these?

The OpenAPI Journey: Episode 1
The glamorous life of an API developer

The OpenAPI Journey: Episode 1

A declarative
definition of my main
API endpoint in just
68 lines of YAML

The glamorous life of an API developer

The OpenAPI Journey: Episode 2
The good life of an API developer

The OpenAPI Journey: Episode 2

CRUD operations of
my most important
resource is just 249
lines of YAML

The good life of an API developer

The OpenAPI Journey: Episode 3
The decent life of an API developer

The OpenAPI Journey: Episode 3

A sample real-world
declarative definition
of an API in just 806
lines of YAML

The decent life of an API developer

The OpenAPI Journey: Final Episode
The “unless-there-is-tooling-I-will-switch-careers” API developer

The OpenAPI Journey: Final Episode

A (great!) real-world
production-ready
declarative definition of an
API in JUST 143943 lines
of YAML that GitHub will
refuse to preview

The “unless-there-is-tooling-I-will-switch-careers” API developer

The OpenAPI Journey: Final Episode

A (great!) real-world
production-ready
declarative definition of an
API in JUST 143943 lines
of YAML that GitHub will
refuse to preview

The “unless-there-is-tooling-I-will-switch-careers” API developer

(At companies like Stripe, there
indeed seems to be proprietary
tooling for generating/managing this)

>80% of this is JSON Schema
Either as re-usable components or inlined in path definitions

KEY OBSERVATION

>80% of this is JSON Schema
Either as re-usable components or inlined in path definitions

KEY OBSERVATION

All of these specifications are
in a way wrappers around

JSON Schema

TAKING IT ONE STEP FURTHER…

All of these specifications are
in a way wrappers around

JSON Schema

TAKING IT ONE STEP FURTHER…

JSON SCHEMA ALL THE WAY

If you want to improve your
API specifications…

If you want to improve your
API specifications…

The best thing you can do is
Improve your JSON Schemas

The Most Common Pitfalls with JSON Schema
At least based on my consultancy experience!

The Most Common Pitfalls with JSON Schema
At least based on my consultancy experience!

Defining entire ontologies of schemas within the API specification

The Most Common Pitfalls with JSON Schema
At least based on my consultancy experience!

Defining entire ontologies of schemas within the API specification

Copy pasting schemas in various API specifications because there is
not a single place to reference them from

The Most Common Pitfalls with JSON Schema
At least based on my consultancy experience!

Defining entire ontologies of schemas within the API specification

Copy pasting schemas in various API specifications because there is
not a single place to reference them from

Schemas are not being unit tested at all

The Most Common Pitfalls with JSON Schema
At least based on my consultancy experience!

Defining entire ontologies of schemas within the API specification

Copy pasting schemas in various API specifications because there is
not a single place to reference them from

Schemas are not being unit tested at all

Schemas are plain invalid, using wrong keywords, etc

The Most Common Pitfalls with JSON Schema
At least based on my consultancy experience!

Defining entire ontologies of schemas within the API specification

Copy pasting schemas in various API specifications because there is
not a single place to reference them from

Schemas are not being unit tested at all

Schemas are plain invalid, using wrong keywords, etc

Schemas are overly complicated from what they are supposed to match
(bad practices, etc)

The Most Common Pitfalls with JSON Schema
At least based on my consultancy experience!

Defining entire ontologies of schemas within the API specification

Copy pasting schemas in various API specifications because there is
not a single place to reference them from

Schemas are not being unit tested at all

Schemas are plain invalid, using wrong keywords, etc

Schemas are overly complicated from what they are supposed to match
(bad practices, etc)

Relying on non-fully-compliant JSON Schema implementations

The JSON Schema first
approach to API specifications

The JSON Schema first
approach to API specifications

TLDR; Just treat you schemas as code. You already know all of this!

The JSON Schema first
approach to API specifications

TLDR; Just treat you schemas as code. You already know all of this!

Surely you don’t write all your projects as single huge code files

Surely you don’t write all your projects as single huge code files

What about your OpenAPIs?

Extract your JSON Schemas as individual files on a GitHub repo
The JSON Schema first approach: Step #1

Extract your JSON Schemas as individual files on a GitHub repo

• Otherwise, its a lot harder to do everything
within the constraints of i.e. an OpenAPI
wrapper!

The JSON Schema first approach: Step #1

Extract your JSON Schemas as individual files on a GitHub repo

• Otherwise, its a lot harder to do everything
within the constraints of i.e. an OpenAPI
wrapper!

• And you can share the same schemas with
more than one API specification without
copy-pasting (yay!)

The JSON Schema first approach: Step #1

Extract your JSON Schemas as individual files on a GitHub repo

A “fundamental of getting your
schema house in order”
Kin Lane, the API Evangelist

• Otherwise, its a lot harder to do everything
within the constraints of i.e. an OpenAPI
wrapper!

• And you can share the same schemas with
more than one API specification without
copy-pasting (yay!)

The JSON Schema first approach: Step #1

Extract your JSON Schemas as individual files on a GitHub repo
The JSON Schema first approach: Step #1

Extract your JSON Schemas as individual files on a GitHub repo
The JSON Schema first approach: Step #1

https://wellshapedwords.com/posts/split-files-to-save-time/

There are various
EXISTING tools to
“unbundle” an OpenAPI
and extract its schemas
as separate files

https://wellshapedwords.com/posts/split-files-to-save-time/

Find a fully-compliant tool to work with JSON Schema
The JSON Schema first approach: Step #2

Find a fully-compliant tool to work with JSON Schema
The JSON Schema first approach: Step #2

https://github.com/sourcemeta/jsonschema

Shameless plug:

You may enjoy my own CLI, as it was
specifically created with these use cases in
mind

https://github.com/sourcemeta/jsonschema

Find a fully-compliant tool to work with JSON Schema
The JSON Schema first approach: Step #2

Shameless plug:

You may enjoy my own CLI, as it was
specifically created with these use cases in
mind

https://github.com/sourcemeta/jsonschema

https://github.com/sourcemeta/jsonschema

Find a fully-compliant tool to work with JSON Schema
The JSON Schema first approach: Step #2

Avoid AJV-based tools! AJV is non-compliant!

Find a fully-compliant tool to work with JSON Schema
The JSON Schema first approach: Step #2

Avoid AJV-based tools! AJV is non-compliant!

Find a fully-compliant tool to work with JSON Schema
The JSON Schema first approach: Step #2

Avoid AJV-based tools! AJV is non-compliant!
Because of it, many developers inadvertently create bad schemas

Check all schemas against their meta-schemas
The JSON Schema first approach: Step #3

Check all schemas against their meta-schemas
The JSON Schema first approach: Step #3

This is analogous to
checking if your code
actually compiles

Check all schemas against their meta-schemas
The JSON Schema first approach: Step #3

This is analogous to
checking if your code
actually compiles

Check all schemas against their meta-schemas
The JSON Schema first approach: Step #3

Check all schemas against their meta-schemas
The JSON Schema first approach: Step #3

The array variant of items
in 2019-09 and before was
replaced by prefixItems

Check all schemas against their meta-schemas
The JSON Schema first approach: Step #3

The array variant of items
in 2019-09 and before was
replaced by prefixItems

Check all schemas against their meta-schemas
The JSON Schema first approach: Step #3

The array variant of items
in 2019-09 and before was
replaced by prefixItems

Sounds obvious, but you
would be surprised at
how many people
upgrade their schemas by
just bumping $schema
without taking a look at
anything else

Are you using any code formatters?
Like prettier, rustfmt, gofmt, etc

Are you using any code formatters?
Like prettier, rustfmt, gofmt, etc

Same for your JSON Schemas, right?

Format your schemas for readability and unified styling
The JSON Schema first approach: Step #4

Format your schemas for readability and unified styling
The JSON Schema first approach: Step #4

Format your schemas for readability and unified styling
The JSON Schema first approach: Step #4

Format your schemas for readability and unified styling
The JSON Schema first approach: Step #4

Dialect first, so we
know how to read
the rest

Format your schemas for readability and unified styling
The JSON Schema first approach: Step #4

Schema-wide
metadata at the top

Format your schemas for readability and unified styling
The JSON Schema first approach: Step #4

Type information
first, if any

Format your schemas for readability and unified styling
The JSON Schema first approach: Step #4

Type-specific
constraints last

Are you using any code linters at work?

Are you using any code linters at work?
You are linting your JSON Schemas too, right?

Lint your schemas to find issues early and avoid bad practices
The JSON Schema first approach: Step #5

Lint your schemas to find issues early and avoid bad practices
The JSON Schema first approach: Step #5

This constrain is doing nothing

Lint your schemas to find issues early and avoid bad practices
The JSON Schema first approach: Step #5

This constrain is doing nothing

Lint your schemas to find issues early and avoid bad practices
The JSON Schema first approach: Step #5

This constrain is doing nothing

For most rules, you can do: jsonschema lint —fix schema.json

Do you write automated tests for your code?

Do you write automated tests for your code?
You are testing your JSON Schemas too, right?

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

Unit test your schemas to ensure they match what you intend
The JSON Schema first approach: Step #6

The syntax of my test
runner is intentionally
inspired by the official
JSON Schema Test Suite

Just like you would do with your code,
run all of this on CI/CD!

We provide an easy
GitHub Actions
integration

Make sure your
schemas “compile”

Enforce a common
readable style

Catch obvious
issues and avoid
bad practices

Make sure the
schemas actually
do what you intend

https://github.com/sourcemeta/jsonschema

JSON Schema CLI

Thanks a lot!

https://github.com/sourcemeta/jsonschema

