;Qri\;er§Vehicle DVLA Dlgital

Licensing
Agency

JSON Schema for data
design and contract,
client and code
generation

INVESTORS IN PE “=PLE
l We

Driver and Vehicle Licensing Agency DVLA Digital

« Part of the UK government

« Maintain national registers of
drivers and vehicles

* Collect over £6 billion a year in
revenue

« Early adopters of public cloud

* Using JSON Schema extensively
for over 5 years

| 7@ Driver & Vehicle Licensing Agency

Background — Naming DVLA Digital

POST: /assign
{ Redi q
n egistration Numbers
regN:lg]345A6B77849(?DE [Container: HTTP API]
vin: " "
} Manages registration numbers
Vehicle Manufacturer Register a Vehicle
[e.g. Peugeot, Citroen] [Container: HTTP API]
Customer who retails new vehicles Aggregated API service for vehicle retailers
FOST: Iregister Vehicles
[Container: HTTP API]
registrationNumber: "AB74 CDE _
vehicleldentificationNumber: "1234567890" B L
}

| 7@ Driver & Vehicle Licensing Agency

Background — Naming DVLA Digital

regNum: "AB74 CDE registrationNumber: "AB74 CDE
vin: "1234567890" vehicleldentificationNumber: "1234567890"

| 7@ Driver & Vehicle Licensing Agency

Background — Data Models DVLA Digital

Application
Code
Unstructured Postcode
Address Address File
Documentation Database
Line 1 UPRN
Line 2 Sub Building Name
Line 3 Building Name
Line 4 Post Town
API Line 5 Post Code
Contracts Postcode Country

| 7@ Driver & Vehicle Licensing Agency

DVLA

Make It easy for teams to use
our standard data models and
naming conventions across
their data, contracts and code.

DVLA Data Dictionary DVLA Digital

OSL Data Dictionary Address / Types / v1 / Address

Schemas
Search

Address

Address

Application A DVLA address entity, which will be one of its child types as described in
https://technical.architecture.dvla.gov.uk/utilities/addressing/addressing-common-data-format.htm|

Common

Customer Sid https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/address/types/v1/address.json

Driver enquiries

$schema http://json-schema.org/draft-07/schema#
Drivers

Driving licence application
Enquiries platform Pro perties

Identity

Name Type
Internal portal

Payment Object (of type Structured Address)

P lised registrati
ersonalised registration Object (of type Unstructured Address)

Print One of:
Standard Object (of type BFPO Address)

Ved reminder Object (of type International Address)

Vehicle enquiries

Vehicles

Example

"structuredAddress": {
"uprn": "10008904551",
"udprn": "4198105",
"subBuildingName": "UNIT 6",
"buildingName": "KISMET PARK",
"thoroughfareName": "PENARTH ROAD",
"postTown": "CARDIFF",

| 7@ Driver & Vehicle Licensing Agency

DVLA Data Dictionary DVLA Digital

Schema: 1608

Data Types: 520

Request: 362

Message: 83 Applications: 7 | Misc

; Driver & Vehicle Licensing Agency

Principles

Focus on

structure

« Describe structure
« Keep things simple
« Shape, names, formats

¥5% Driver & Vehicle Licensing Agency

Optimise for

tooling

Consider compatibility
with tooling

Don’t describe business
rules

Avoid “logic” keywords
e.g. not, if, then, else,
allof, oneOf, etc

DVLA Digital

Composition

Avoid literal duplication
Use $ref where possible
Use composition patterns

Example - Address

Structured Addre ssHstructuredAddre s

Address

Unstructured AddressHunstructuredAddress

BFPO Address

bfpoAddress

International Address]—[intemational.&ddress

| 7@ Driver & Vehicle Licensing Agency

DVLA Digital

language

country

dps

poBoxNumber
organisationName
departmentName
subBuildingName
buildingName
buildingNumber
dependentThoroughfareName
thoroughfareName
doubleDependentLocality
dependentLocality
postTown

postcode

udprn

uprn
language

country <)
dps —
linel —_—
line2 -
Java
lined

line5
postcode

bfpoNumber

linel
line2
line3
lined
lines
country

Driver & Vehicle Licensing Agency

yml > address > types > v1 > ! structured-address.yml

ing.dvla.gov.uk/address/types/v1l/structured-address.yml
http://json-schema.org/draft-07
Structured Address

jescription: A DVLA structured address entity, a validated PAF address plus metadata as described in httpj

ple
turedAddre
'10008904551"
u '4198105"
ubBuildingName: UNIT 6
ngName: KISMET PARK
reName: PENARTH ROAD
CARDIFF

: object
ertie
edAddr H
"#/definitions/structuredAddress"
required:
- structuredAddress

itionalPr rt

edAddress:
Structured Address Properties
: object

ties:
address.yml#/definitions/language
address.yml#/definitions/country

f: address.yml#/definitions/dps
poBoxNumk
"#/definitions/poBoxNum
tionName:

"#/definitions/organisationName"

ef: "#/definitions/buildingNam
buildin mbe
of
tThorough
"#/definitions/dependentThoroughfareNa

hfareName:

"$id": "https

ribed in

"structuredAddress”: {
"uprn": ' 0890455
"udprn" 3185" ,
"subBuildingName": "UNIT 6",
"buildingName": " ET PARK",
“thoroughfareName": "PENARTH
"postTown": ARDIFF",

“CF11 8TT",

dps™: “1A",
"language":

“type": "object",
“properties": {
“structuredAddress": {
"$ref": " finit iy

"required [
"structuredAddr

1,
"additionalProperties"
“definitions": {

ured Address Pro

definiti

'
"organisationName'

DVLA

\datadictionaryschemas > address > types
tured-addi
uk.gov.dvla.osl.osldatadictionaryschemas.address. types.vl;

javax.annotation.processing.Generated;
javax.validation.constraints.NotNull;
javax.validation.constraints.Size;

com. fasterxml. jackson.annotation.JsonInclude;

com. fasterxml. jackson.annotation.JsonProperty;

com. fasterxml. jackson.annotation.JsonPropertyDescription;

r-maker-factories > address > types > v structured-address.rb
com. fasterxml. jackson.annotation. JsonPropertyOrder;

“reum‘mrgssl.‘f‘ factory(:structured_address_properties) ¢
language(json: 'language') { Fa orem.characters(number: (1..256).to_a.sample) }
country(json: ‘c try' aki m.characters(number: (1..256).to_a.sample) }
dps(json: ‘'dps') { Faker 0 1..2).to_a.sample) }
po_box_number(json: 'poBoxN 2m.characters (number: (1..6).to_a.sample) }
organisation_name(json: 'or isation| characters(number: (1..60).to_a.sample) }
department_name(json: ' tmentNe) 1..60).to_a.sample) }
“ sub_building_name(jso b Ld 2 al : m.characters(number: (1..30).to_a.sample) }
ninclude(JsonInclude.Include.NONNULL) / : building_name(json: i) { Faker::Lorem.characters(number: (1..50).to_a.sample) }
pertydrden building_number(json > orem.characters(numbe 1..4).to_a.sample) }
dependent_thoroughfare_name (jso t a .characters (number: (1..60).to_a.sample) }
thoroughfare_name(jso ak 1..60).to_a.sample) }
double_dependent_locality(json: 'd) C ty') { Faker::Lorem.characters(number: (1..35).to_a.sample) }
dependent_locality(json: ' L ity ake yrem.characters(number: (1..35).to_a.sample) }
r t poBoxNumber?: 0 post_town(jso i € 2 yrem.characters(number: (1..30).to_a.sample) }
iilding »“ : postcode(json ', required: tr a Le characters(number: .8).to_a.sample) }
it udprn(json: ‘udprr . characters (numbe 2).to_a.sample) }
gt uprn(json: ‘uprn') { Faker::Lorem.characters(number: (1..2).to_a.sample) }

yroughfar

language?:

organisationName?:
rMaker.factory(:structured_address) do
departmentNans string; structured_address(json: 'structt re required: tru Fe M :structured_address_properties].build }

subBuildingName

buildingN

buildingNumber?: string;
nProperty(
onPropert
min = @, max = 256 horoughfareName
String language;

Java

Driver & Vehicle Licensing Agency

Address

yml > address > types > v1 > ! address.yml > {} definitions > {} country > [] examples
https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/address/types/vl/
address.yml

http://json-schema.org/draft-07/schema#
»: Address
: A DVLA address entity, which will be one of its child types as described

in

addressing-common-data-format.html
examples:
2: object

structured-address.yml
unstructured-address.yml
bfpo-address.yml

f: international-address.yml

Postcode
n: "The Postcode is part of a coding system created and used by the
Royal Mail across the United Kingdom for sorting mail.

In other words, Postcodes are an abbreviated form of address, and enable a
group of Delivery Points to be specifically identified.
For the purpose of retaining legacy compatability no regex based validation is
outlined below.
If you are validating customer input UK postcodes then the following regex may
be used:
~([Gg] [Ti] [Rr] @[Aal{2}) | ((([A-Za-z] [0-9]{1,2}) |(([A-Za-z] [A-Ha-hJ-Yj-y] [0-9]{1,
2}) | (([A-Za-z] [0-9] [A-Za-z]) | ([A-Za-z] [A-Ha-h]-Yj-y] [0-9]? [A-Za-2])))) {0,1}
[0-9] [A-Za-z]1{2}) $"

string

Driver & Vehicle Licensing Agency

DVLA

Customer

> customer > customer-domain > types > v1 > ! customeryml > {} definitions > {} customerld
https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/customer/

customer-domain/types/vl/customer.yml
http://json-schema.org/draft-07/schema#
¢ Customer
>: object

"#/definitions/customerId"

» 1

"#/definitions/customerType"

address:
$ref: "../../../../address/types/vl/address.yml"

"#/definitions/emailAddress"
er:
"#/definitions/phoneNumber"

1alD a
alveta

f: "./individual-details.yml"

"#/definitions/contactPreferences"

Example - Address

Address

Type

| 7@ Driver & Vehicle Licensing Agency

Customer

Address

Type

Request / Response

DVLA Digital

Event

Address $ref

Does not include indirect references.

Address $ref Data Types -

Jr—
Pt s

z

>

- o

Panater s 5’%‘ i .
<
o9
Ny
'Z' Ditvai
i
. & .
w @) ol
-S’(’h [k. e
s R
™
. HAS_REF
HAS_REF HAS REF
S < = e
> =
et

1S, REE

«— HASREF =

o
ey
HAS Rep

¢

2

Bac. r ‘5\0
P
o
o

ks

Hokdor

Does not include indirect references.

Address $ref Events and Messages

Does not include indirect references.

Clearly document references

$ref becomes a link

The target schema title is used as a label
Helps understand composition

Simple navigation between schema

A58 Driver & Vehicle Licensing Agency

DVLA Digital

Customer / Customer Domain / Types / v1 / Customer

Customer

Sid

https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/customer/customer-

domain/types/v1/customer.json

$schema http://json-schema.org/draft-07/schema#

Properties

Name

customerld

customerType
address
emailAddress
phoneNumber
individualDetails

contactPreferences

Type

String

String

Object (of type Address)

String

String

Object (of type Individual details)

Array [Contact preference item]

* meta.enum custom keyword

yml > cpc > types > v1 > cpc-status.yml > [] examples

$id: https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/cpc/types/vl/cpc—status.yml
$schema: http://json-schema.org/draft-07/schema#
title: CPC Status
type: string
description: The status of the CPC entitlement
enum:
[
CURRENT,
REVOKED,
SUPERSEDED
1
meta:enum:
Current: The current CPC entitlement for the driver
Revoked: This CPC entitlement for the driver has been revoked
Superseded: This CPC entitlement for the driver has been superseded

xamples:
— CURRENT
— REVOKED

Driver & Vehicle Licensing Agency

DVLA

Cpc / Types / v1 / Cpc Status

CPC Status

The status of the CPC entitlement

Sid https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/cpc/types/v1/cpc-status.json

$schema http://json-schema.org/draft-07/schema#

Example

"CURRENT"
» Faker maker examples

Sid https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/cpc/types/v1/cpc-status.json
Title CPC Status
Description The status of the CPC entitlement
Type String
Current
The current CPC entitlement for the driver

Revoked

Enum
This CPC entitlement for the driver has been revoked

Superseded
This CPC entitlement for the driver has been superseded

¢ CURRENT

Examples
REVOKED

DVLA

* meta:title and meta:description
custom keywords for examples Address

A DVLA address entity, which will be one of its child types as described in
https://technical.architecture.dvla.gov.uk/utilities/addressing/addressing-common-data-format.html

Sid https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/address/types/v1/address.yml

$schema http://json-schema.org/draft-07/schemai#

Example

: https://osl-data-dictionary-schemas.engineering.dvla.gov.uk/address/types/vl/address.yml

: http://json-s ma.org/draft-07/schema# Structured Address

e: Address A structured address based on the PAF format
: A DVLA address entity, which will be one of its child types as described in https://
addressing-common-data-format.html

{
"structuredAddress": {
Structured Address) ' . "uprn”: "108689084551",
tion:* truc e ress ase > a4
ipti : A structured address based on the PAF format “udprn”: "4198105",

l ”‘o 1re v-) "subBuildingName": "UNIT 6",
10008904551 "buildingName": "KISMET PARK",
" 105"

4198105 “thoroughfareName": "PENARTH ROAD",
UNIT 6 o g !
postTown": "CARDIFF",
KISMET PARK
"postcode”: "CF11 8TT",
me: PENARTH ROAD B Jo ©
country": "Wales”,
CARDIFF
"dps": "1A",
CF11 8TT o P
language": "EN
y: Wales
}
}

EN

% Driver & Vehicle Licensing Agency

Products

v yml

address/types/v1
application

casework

common

cpc

customer
driver-enquiries

drivers
driving-licence-application
enquiries-platform
identity

internal-portal

payment
personalised-registration
print
registration-management

WOWOONOWVNY WYY Y YYD YYD N NN NN

standard

Driver & Vehicle Licensing Agency

Components

v application
application-diary
application-domain

application-process-engine

application-task

DVLA

Schema Categories

v application-domain

actions
applications
events
requests

responses

v types /vl

action-history-item.yml
action.ymi

applicant.yml
application-state.ymil
application.yml
casework.yml
date-and-time.yml
find-by-product-id.yml
find-by-product-key.yml

image.yml

Build Process DVLA Digital

JSON Schema
yml / json / dereferenced json

npm package

TypeScript Types EEm

json-schema-to-typescript

P

S
~
Data I_chtlonary Vahdatlpn 9nd Tests s Schema Generators _ HTML _ HTML website
git repo ajv / jest (event envelopes etc) json-schema-static-docs | Eza
Java Classes
jsonschema2pojo ((5 maven package
=gy Ny N

Ruby Test Data Generators
ruby factories 4’[gem package

Design » Build » Artefacts

Process DV| A

Validate
Validate schema against specification
Ensure $ref values resolve
Validate examples within schema
Ensures team A does not break team B

Unit Tests
$id matches DVLA URL pattern
All schema have a title and examples defined
Other internal standards
Verify output of build process

}53 Driver & Vehicle Licensing Agency

jschon Python
rc-circe-json-validator Scala
jsonschemafriend Java

mjs Scala

JsonSchema.Net .NET
schemasafe JavaScript

jsoncons C++
cfworker-json-schema JavaScript
opis-json-schema PHP

vscode-json-language-service TypeScript

ajv JavaScript

| Driver & Vehicle Licensing Agency

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

DVLA

End-to-end process

Data Dictionary
git repo

Validation and Tests
ajv / jest

Schema Generators
(event envelopes etc)

JSON Schema

yml / json / dereferenced json

TypeScript Types
json-schema-to-typescript

TS

N HTML

Design

git

A\\
L)

» Build

json-schema-static-docs

Java Classes

jsonschema2pojo ((?
=
Java
Ruby Test Data Generators
ruby factories

—> Artefacts

OpenAPI Contract

.| Client Generator

openapi-generator

—

npm package

npm package

Data Platform
Event Validation

TypeScript / Java
Application or Library

Automation Tests

Events

Messages

—

Y

p— N

3

maven package

————Maven

)

gem package

—

Consumers

Application

| TypeScript, Java, Ruby

HTTP
Reg/Res

consumers

/v3/conversions/unstructured:
post:
operationId: POST-Address-Conversion-Structured-to-Unstructured
summary: Convert a DVLA Structured address to a DVLA Unstructured address, deprecated by new generic v4 endpoint
deprecated: true
parameters:
- $ref:
- $ref:
- $ref:
requestBody:
description: >-
Structured address to convert. At least one of the following address
fields must not be empty: poBoxNumber, organisationName,
departmentName, subBuildingName, buildingName, buildingNumber,
dependentThoroughfareName, thoroughfareName, doubleDependentLocality,
dependentLocality, postTown.
required: true
content:
application/json:

I $ref: ' /node_modules/osl-data-dictionary-schemas/dist/json-dereferenced/address/types/vl/structured-address.json'
responses:

'200':
description: Converted common display format address
content:
application/json:

/node_modules/osl-data-dictionary-schemas/dist/json-dereferenced/address/types/vl/unstructured-address.json'

Use Case — Messages DVLA Digital

Message Message
Producer Consumer {&}
{&} Validate
{‘f‘} Message N
Message Model ‘ ; {‘ﬁj
essage
Model
((] SQS Queue
——
= g)\ <
Java Customer & T3S
Address

| 7@ Driver & Vehicle Licensing Agency

Use Case = Client / Server

Client
Application

HTTP Client
openapi + json-schema

{4

{4

Request

«

4

API Contract

{5
openapi
+ json-schema

| 7@ Driver & Vehicle Licensing Agency

API Gateway

DVLA Digital

Get Application by ID

{4

Req + Res
Model

{4

Application
Data Model

=Y

Application Database
DynamoDB

DVLA

customerNumber:
title: Customer Number
type: string
description: a human readable identifier that doesn't change over the life of the Customer

export interface Customer {

customerNumber: string;

FakerMaker. factory(:customer) do
customer_number(json: 'customerNumber', required: true) { Faker::Lorem.word }

@Generated("jsonschema2pojo")
public class Customer H{

@JsonProperty("customerNumber")

@JsonPropertyDescription("a human readable identifier that doesn't change over the life of the Customer")
@otNull

private String customerNumber;

Closing DVLA Digital

- JSON Schema is awesome!

- The ecosystem of tooling is powerful

- Take some common data models and make it easy for
people to use them across your technology stacks

- Automate your end-to-end process to remove handoffs
between the source of truth and your code and data

) Driver & Vehicle Licensing Agency

	Slide 1: JSON Schema for data design and contract, client and code generation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

